Mardi 7 mai 2019 — Contrôle Terminal d'algèbre — Durée 2 heures

Toutes les réponses doivent être justifiées. Il sera tenu compte de la qualité de la rédaction lors de la correction. Les calculatrices et téléphones portables sont interdits

Exercice 1. [8 points] Pour tout réel a, on considère pour la matrice

$$M(a) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & -2 & a \\ 2 & 2a - 2 & -a - 2 & 3a - 1 \\ 3 & a + 2 & -3 & 2a + 1 \end{pmatrix}.$$

1. Calculer le déterminant de M(a).

Indication : on commencera par créer une ligne ou une colonne creuse (c-à-d. avec beaucoup de zéros) en effectuant des opérations sur les lignes ou les colonnes, avant de développer le déterminant. On vérifiera à la fin du calcul que a=1 et a=5 sont les valeurs de a qui annulent ce déterminant.

Solution : [1,5 points] $\operatorname{Det}(M(a)) = (a-1)(a-5)^2$

2. Pour quelles valeurs de a la matrice M(a) est-elle inversible?

Solution : [0,5 point] (M(a)) est inversible si et seulement si $a \neq 1$ et $a \neq 5$

3. Déterminer le rang de la matrice M(a), discuter suivant les valeurs de a.

Solution : [2 points] Le rang de (M(a)) est 4 pour $a \neq 1$ et $a \neq 5$. Le rang de M(1) est 3 et celui de M(5) vaut 2.

4. Soit ϕ_a l'application linéaire de \mathbb{R}^4 dans \mathbb{R}^4 dont la matrice dans la base canonique est M(a). Pour quelles valeurs de a l'application ϕ_a est-elle injective ? surjective ?

Solution : [1 point] ϕ_a est injective, bijective et surjective si et seulement si $a \neq 1$ et $a \neq 5$.

5. Déterminer le noyau et l'image de ϕ_a . Pour les cas a=1 et a=5, donner une base de $\ker(\phi_a)$ et de $Im(\phi_a)$.

Solution: [3 points] ϕ_a est injective, bijective et surjective si et seulement si $a \neq 1$ et $a \neq 5$.

Dans ce cas,
$$\ker(\phi_a) = \{\overrightarrow{0}\}\$$
et $Im(\phi_a) = \mathbb{R}^4$. Pour $a=1$, $\ker(\phi_a) = Vect(\begin{pmatrix} 1\\0\\0\\-1 \end{pmatrix})$ et $Im(f)$ a pour

base $\phi_a(e_1), \phi_a(e_2), \phi_a(e_3)$, $\dim(\ker(\phi_a) = 1, \dim(Im(\phi_a) = 3.$ Lorsque $a = 5, \dim(Im(\phi_5) = 2.$ Les deux premiers vecteurs colonnes de la matrice forment une base de $Im(\phi_5)$ et $\ker(\phi_a)$ a pour équations

cartésiennes,
$$\begin{bmatrix} x+y+z+t=&0\\ 2y-3z+4t=&0 \end{bmatrix} \text{ et pour base les vecteurs } \begin{pmatrix} -5/2\\ 3/2\\ 1\\ 0 \end{pmatrix} \text{ et } \begin{pmatrix} 1\\ -2\\ 0\\ 1 \end{pmatrix}$$

Exercice 2. [10 points] Soit le \mathbb{R} -espace vectoriel $E = \mathbb{R}^3$, on note Can, la base de E, formée des trois vecteurs $e_1 = (1,0,0)$, $e_2 = (0,1,0)$, $e_3 = (0,0,1)$. Soit $f : \mathbb{R}^3 \to \mathbb{R}^3$ l'application définie par f(x,y,z) = (3x+3z,2x+2y+2z,x+4y+z)

On considère les vecteurs $u_1 = (1, 0, -1), u_2 = (1, -1, 0), u_3 = (1, 1, 1).$

1. Est-ce que f est une application linéaire? Donner la matrice A de f dans la base canonique. Justifier votre réponse.

SOLUTION : [2 points] Oui car $f=T_A$ où

$$A = \left(\begin{array}{rrr} 3 & 0 & 3 \\ 2 & 2 & 2 \\ 1 & 4 & 1 \end{array}\right)$$

2. Démontrer que $\mathcal{U} = (u_1, u_2, u_3)$ est une base de E.

Solution : **[1 point]** Par exemple $\det(u_1,u_2,u_3)=-3$, non nul donc la famille $\mathcal U$ est une base de de E

- 3. La suite de l'exercice a pour objectif le calcul de A^n pour $n \in \mathbb{N}$.
 - (a) Calculer $f(u_1)$, $f(u_2)$, $f(u_3)$, et exprimer leurs images dans la base \mathcal{U} .

Solution: [2 points] $f(u_1) = \overrightarrow{0}, f(u_2) = 3u_1, f(u_3) = 6u_3$

(b) Déterminer la matrice T de f dans la base \mathcal{U} .

Solution: **[1 point]** $T = \begin{pmatrix} 0 & 3 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 6 \end{pmatrix}$

(c) Démontrer par récurrence que $T^n = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 6^n \end{pmatrix}$ pour $n \ge 2$.

 $\begin{array}{|c|c|c|c|c|c|}\hline \text{SOLUTION}: & \textbf{[1 point]} & \text{On calcule } T^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 36 \end{pmatrix}, \text{ si} \\ T^n = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 6^n \end{pmatrix} \text{ alors } T^{n+1} = TT^n = \begin{pmatrix} 0 & 3 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 6 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 6^n \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 6^{n+1} \end{pmatrix}. \text{ La propriété est vraie pour } n=2 \text{ et elle est héréditaire, donc elle est vraie pour tout } n \geq 2 \\ \hline \end{array}$

(d) On considère la matrice $P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{pmatrix}$ dont les vecteurs colonnes sont u_1, u_2, u_3 .

Expliquer sans aucun calcul pourquoi la matrice P est inversible et calculer son inverse.

 $\begin{array}{lll} \text{Solution}: & \textbf{[1,5 points]} & \text{Cette matrice est une matrice de changement de base donc elle est} \\ \text{inversible. Le calcul donne} & P^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 1 & -2 \\ 1 & -2 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{array}$

(e) Démontrer que $PTP^{-1} = A$, puis en déduire A^n pour tout $n \ge 1$.

Solution : [1,5 points] Soit calcul, soit cours : c'est la formule de changement de base, d'où $PTP^{-1}=A$. La matrice A^n est la matrice de f^n dans la base Can et la matrice T^n est la matrice de f^n dans la base $\mathcal U$, la formule de changement de base précédente donne donc $PT^nP^{-1}=A^n$.

On peut aussi effectuer une démonstration par récurrence qui utilise $P^{-1}P=I_3$:

La formule est vraie aux rangs 0 et 1, et si elle est vraie au rang n, alors,

 $A^{n+1}=AA^n=PTP^{-1}PT^nP^{-1}=PTT^nP^{-1}=PT^{n+1}P^{-1}$, car $P^{-1}P=I_3$. Donc la formule est vraie au rang n+1; cette formule est initialisée et héréditaire, elle est donc vraie pour tout $n\in\mathbb{N}$.

$$A^n = PT^nP^{-1}.$$

On laisse au lecteur le calcul final.

Exercice 3. [2 points] Soient le \mathbb{R} -espace vectoriel $E = \mathbb{R}^4$ et les vecteurs de E:

$$U_1 = (1, 1, -1, 1), \ U_2 = (5, 1, -1, 4), \ U_3 = (3, 1, -1, 2).$$

On considère les deux sous-espaces vectoriels de E définis par :

$$F = \text{Vect}(U_1, U_2, U_3) \text{ et } G = \{(x, y, z, t) \in E, x - y + z = 0 \text{ et } x + 2z - t = 0\}.$$

Les sous-espaces vectoriels F et G sont-ils supplémentaires? Votre réponse doit être argumentée.

Solution: La somme n'est pas directe. On montre (par exemple, car d'autres voies sont possibles) $\dim F = 3$, $2 = \dim G$. On conclut à l'aide de la dimension de F + G,

 $\dim(F + G) = \dim(F) + \dim(G) - \dim(F \cap G) = 3 + 2 - \dim(F \cap G) \le 4.$

Ce qui implique $\dim(F \cap G) \geq 1$.

Donc $F \cap G \neq \{\overrightarrow{0}\}\$, et la somme F + G n'est pas directe.